Technology to Improve Logistics Decisions

Jarrod Goentzel

MIT Supply Chain Management Program
Panel: Technology to Improve Logistics Decisions

3 March 2011
Conference on Health and Humanitarian Logistics
Georgia Tech

Jarrod Goentzel
Executive Director, MIT Supply Chain Management Program
Research Director, MIT Humanitarian Logistics Initiative
Example: Technology in Crisis

- **Purpose:** Needs assessment data collection as a demand signal for supply chains
- **Technology:** PDA survey uploaded daily
- **Implementation**
 - Questionnaire developed in collaboration with Clusters
 - 12 teams with 3 Haitian surveyors per team
 - Training and pilot before active collection
 - 288 site visits each 4 week period (6 days/wk)
 - At each site, survey 18-21 Households (randomly), Key Informant, and Health Center
 - 61 household questions
 - 40 key informant questions
 - 18 health center questions

- **Sites selected purposively**
 - Camps in earthquake-affected areas
 - Communities near camps
 - Outlying areas in which IDPs have settled

Jarrod Goentzel (goentzel@mit.edu)
PaP Weekly Snapshots: Shelter Indicator: Access to Waterproof Roof

Shelter situation has improved since March

Source:
Ms Amanda Schiff, Ms Erica Gralla
Dr Douglas Jones, Dr James Evans,
Dr Marc Zissman
(MIT Lincoln Laboratory)

Dr Louise Ivers
(Harvard Medical School, Partners in Health)

Briefing to the CSC
4 May 2010

Jarrod Goentzel (goentzel@mit.edu)
PaP Monthly Snapshots: Shelter
Indicator: Access to Waterproof Roof

Population:
sample mean of the 41 camps visited each month

Descriptive Statistics:
• Median
• 25-75 percentiles
• Outliers

Source:
Example: Technology in Crisis

- **Purpose**: Needs assessment data collection as a demand signal for supply chains
- **Technology**: PDA survey uploaded daily

- **Impact**
 - Raw data posted daily
 - Simple analysis for weekly briefing to sponsors
 - Deeper analysis of trends in hindsight

- **Improvement**
 - Plan for and automate data cleaning
 - Plan for and automate analytical process
 - Identify decision makers and create analytical “artifacts” for communication
 - Incorporate other assessments and data such as crowdsourcing to provide a comprehensive demand signal for supply chains
Example: Technology in Operations

- Purpose: improve warehouse space utilization
- Technology
 - Consumption data in Electronic Medical Records
 - Forecasting and simulation model in Excel
Forecasting/Simulation Model Snapshot

Source: Heberley, C. and Hoover, M. MIT Master's Thesis, 2010.

Jarrod Goentzel (goentzel@mit.edu)
Demand Forecasting Analysis

Jarrod Goentzel (goentzel@mit.edu)
Order Policy Analysis

Results of simulation model

Warehouse Volume (cubic meters)

Emergency Procurement Costs

L – Lead Time in months
R – Review period in months

Jarrod Goentzel (goentzel@mit.edu)
Technology in crisis
 - Focus: rapid demand signal and operating picture
 - Leverage various data gathering technologies
 - Traditional: surveys, assessments, satellite imagery
 - New: crowdsourcing, sensors, mobile phone polling
 - Focus on technology that turns data into demand/supply information
 - Automation
 - Interpretation
 - Communication

Technology in operations
 - Focus: robust supply chain design and management
 - Leverage various development paths
 - open source (e.g. OpenMRS, Helios Foundation, Sahana)
 - proprietary (e.g. AidMatrix, Llamasoft, Microsoft, SAP)
 - Move towards interoperability: standards (e.g. NetHope)
 - Plan and budget for implementation: process tools, customization/configuration, training, hosting architecture, offline synchronization
 - Select considering long-term support: commercial services, “Red Hat” for open source