Operations Research and Public Health

Edward H. Kaplan, PhD

William N and Marie A Beach Professor of Management Sciences
Yale School of Management

Professor of Public Health
Yale School of Public Health

Professor of Engineering
Yale School of Engineering and Applied Science
What Is Operations Research?

- Operations research is the scientific study of operations for the purpose of making better decisions.
- Also refers to mathematical techniques developed/used by operations researchers.
- Original applications were military; now prevalent in supply chain management, transportation, private/public services, homeland security/counterterrorism, etc.
What Is Public Health?

- The mission of public health is to assure conditions in which people can be healthy!
- Mission is accomplished via the application of public health *science* to the design and operation of public health services
- Operations research (and management) principles and techniques can be applied in both of these areas
Public Health Operations

- Disease screening/surveillance (e.g. HIV, influenza)
- Outbreak investigation (e.g. SARS)
- Vaccination (e.g. childhood diseases), quarantine/isolation (e.g. TB)
- Behavioral modification programs (e.g. STDs)
- Inspection/standards enforcement at public establishments (e.g. restaurants)
- Environmental monitoring (e.g. bacterial levels at public swimming areas)
- Vector control (e.g. mosquitos, ticks, etc.)
OPERATIONS RESEARCH AND PUBLIC HEALTH

The problem of translating theory into practice is usually beset with difficulty, even in the more exact natural sciences. In the past, this problem has suffered from neglect, perhaps because it was assumed that practical men could apply in practice any clearly stated theory, and needed no special agency to facilitate and accelerate this process.

Following the termination of hostilities, it was quickly realized that operations research methods and technics could have wide application to conditions and needs of peace in government, industry, and in the community in general. Since the war

Clearly, here are exciting possibilities of interweaving theoretical insight with practical experience which no health worker can afford to overlook. While the

How valuable operations research will eventually be to public health remains to be seen. The surface of the problems presented by such interaction of research and policy decisions has barely been touched. All that can be done here is to draw attention to this important branch of scientific activity and to indicate its possible potential for public health.
What is the most famous equation in service operations management?

\[L = \lambda W \]

What is the most famous equation in epidemiology?

\[\text{Prevalence} = \text{Incidence} \times \text{Duration} \]

Any questions?
Application of $L = \lambda W$: Estimating HIV Incidence

Figure 4. A: Comparison of sensitive (3A11) and less-sensitive (3A11-LS) EIAs. B: Sensitive EIA plateaus soon after seroconversion, while less-sensitive EIA has longer dynamic range and takes about an additional 130 days to register reactive.

Table 1. Estimated Incidence of Human Immunodeficiency Virus Infection, 50 US States and the District of Columbia

Stratified Extrapolation Approach

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>22 States, No. (%)</th>
<th>50 States + DC, 2006 Incidence, No. (%) [95% CI]</th>
<th>Extended Back-Calculation Approach, 50 States + DC, Incidence per Year, 2003-2006, No. (%) [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>6884</td>
<td>40800</td>
<td>56300 [48200-64500]</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>4892 (71)</td>
<td>28900 (73)</td>
<td>41400 (73) [35100-47700]</td>
</tr>
<tr>
<td>Female</td>
<td>1972 (29)</td>
<td>10600 (27)</td>
<td>15000 (27) [12600-17300]</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>1707 (25)</td>
<td>11400 (29)</td>
<td>19600 (33) [16400-22800]</td>
</tr>
<tr>
<td>Black</td>
<td>3825 (56)</td>
<td>20000 (51)</td>
<td>24900 (45) [21100-28700]</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1190 (17)</td>
<td>7000 (18)</td>
<td>9700 (17) [7900-11600]</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>78 (1)</td>
<td>440 (1)</td>
<td>590 (1) [490-1900]</td>
</tr>
<tr>
<td>American Indian/Alaska Native</td>
<td>21 (<1)</td>
<td>130 (<1)</td>
<td>180 (<1) [60-500]</td>
</tr>
<tr>
<td>Age, y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-29</td>
<td>2790 (41)</td>
<td>13100 (33)</td>
<td>19200 (34) [16300-22200]</td>
</tr>
<tr>
<td>30-39</td>
<td>1892 (28)</td>
<td>12100 (31)</td>
<td>17400 (31) [14600-20200]</td>
</tr>
<tr>
<td>40-49</td>
<td>1539 (22)</td>
<td>9800 (25)</td>
<td>13900 (25) [11700-16100]</td>
</tr>
<tr>
<td>50-99</td>
<td>643 (9)</td>
<td>4400 (11)</td>
<td>5800 (10) [4800-7100]</td>
</tr>
<tr>
<td>Transmission category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSM</td>
<td>3582 (52)</td>
<td>18400 (48)</td>
<td>28700 (53) [24300-33100]</td>
</tr>
<tr>
<td>IDU</td>
<td>749 (11)</td>
<td>5600 (15)</td>
<td>6600 (12) [5300-7900]</td>
</tr>
<tr>
<td>MS/MDU</td>
<td>182 (3)</td>
<td>1200 (3)</td>
<td>2100 (4) [1500-2700]</td>
</tr>
<tr>
<td>Heterosexual</td>
<td>2328 (34)</td>
<td>13100 (34)</td>
<td>16800 (31) [14200-19400]</td>
</tr>
</tbody>
</table>

Abbreviations: BED, BED human immunodeficiency virus 1 capture enzyme immunoassay; CI, confidence interval; IDU, injection drug use; MSM, men who have sex with men.

b Numbers do not count individuals diagnosed with AIDS at or within 6 mo after human immunodeficiency virus diagnosis; these were risk redistributed but not adjusted for reporting delay.

c Numbers for 2006 diagnoses were adjusted for reporting delay and risk redistribution.

d Confidence intervals reflect random variability affecting model uncertainty but may not reflect model- assumption uncertainty; thus, they should be interpreted with caution.

e Race/ethnicity and transmission category subgroup numbers may not sum to the overall total because cases with unknown race/ethnicity or unknown transmission categories are excluded. However, percentages are adjusted for the exclusion and sum to 100%.
OR Approach to Needle Exchange

- needle exchange reduces needle circulation times
- as a consequence, *needles share fewer people*
- as a further consequence, *fraction of needles that are infected should decline*
- easy to capture this logic with simple model
- what was not so easy was to verify it with actual data from the needle exchange program
Circulation Theory: An Operational Model

Client Participation and Visitation
(New Haven Needle Exchange Program)
Circulation Theory: An Operational Model

Figure 3
Mean Needle Circulation Time

- Chart showing the mean needle circulation time from December 1990 to June 1992.
- The curve indicates a decrease in circulation time over time.
- The x-axis represents the month of program operations, and the y-axis represents the mean circulation time in minutes.
Circulation Theory: An Operational Model
Summary

 There are many outstanding opportunities to apply operations research ideas to improve public health
 – methodological contributions to epidemiology
 – practical contributions to the design, evaluation and operation of public health activities