

Erasmus University Rotterdam

TRUCK DRIVERS IN SUB-SAHARAN AFRICA

Difficult work environment

- Stress, Ioneliness
- High-risk sexual behavior
- Vulnerable to HIV, STIs, Tuberculosis, Malaria, …

Traditional health system

- Difficult to access for truck drivers
- Insufficient parking space
- Opening hours
- Truck drivers don't deviate

NORTH STAR ALLIANCE

Roadside Wellness Centers (RWCs)

- Clinics placed at busy truck stops: hotspots
- 34 RWCs in 12 countries in SSA
- Reduce barriers to access

5 service packages

- Primary care services
- STI, Malaria, Tuberculosis, & HIV services

Locating Roadside Clinics in Sub-Saharan Africa

H. de Vries¹, A.P.M. Wagelmans¹, J.J. van de Klundert²

¹Econometric Institute, Erasmus University Rotterdam ²Institute of Health Policy and Management, Erasmus University Rotterdam

LOCATION PROBLEM

Decisions

- Locations of a given number of new Roadside Wellness Centers
- Which optional service packages these RWCs should offer

OPTIMIZATION CRITERIA

- Maximize patient volume
 - Choose locations that attract many truck driver patients
- **Enhance continuity of access**
 - Choose locations that ensure adequate access at any point of time during the truck drivers' trips
 - Travel time gaps between RWCs should not be too large
 - Particularly important for health services that require frequent clinic visits (HIV & TB treatment)

MEASURING ACCESS TO HEALTHCARE

Traditional access measures

- Based on distance/ travel time between patient and provider
- Not suitable for mobile patients like truck drivers

Three access measures for mobile patients

- fraction of time within a critical time limit from a health facility CTL:
- RCTL: fraction of time within a critical time limit & fraction of time within a recommended time limit
- ASAP: expected travel time to nearest facility when needed

SOLUTION METHOD

Mixed Integer Programming (MIP) formulation

- Objective function:
- max $r \cdot Patient Volume + (1 r) \cdot Continuous Access Score$ Continuous Access Score:

 $(Truck Volume_{a} \cdot Access Score_{as})$

For more information, contact: Name: Harwin de Vries E-mail: hdevries@ese.eur.nl

CASE STUDY RESULTS

Case study: North South Corridor network

- Location decisions have a huge impact in terms of continuity of access.
 - E.g. situation along three major corridors before and after adding 4 RWCs to the network:

Possible to obtain locations that are close to optimal w.r.t. patient volume and continuity of access.

- Location decisions are generally very robust w.r.t. data impreciseness.
 - Optimality gap when randomly drawing "true" parameter values:

	Impreciseness			
Optimality gap (25 draws)	10%	20%	30%	40%
Avg. (%)	0.17	0.49	0.75	1.65
Max. (%)	0.73	1.77	2.73	6.90
Worst Case Bound (%)	1.35	9.35	20.7	32.8

Synergy effects by placing multiple facilities Network planning is very beneficial

COMPUTATIONAL RESULTS

- The location problem is Strongly NP-Hard
- The majority of the binary variables can be relaxed by total unimodularity of the corresponding constraint matrix
- 3. Network structure strongly affects solution time

