Models for Clearance

- **Inputs**: Road network condition, clearance capacity per period, debris amounts, relief supply/demand locations and quantities
- **Output**: Clearance sequence for a set of roads
- **Complete debris information**: All debris amounts assumed to be known
- **Incomplete debris information**: Reachable arcs known, beliefs about unreachable arcs updated as clearance proceeds
- **Regional updates** as arcs in the same region become reachable

Phases of Debris Operations

- **Clearance**: Unblock roads
 - Prioritize roads to be cleared
 - Connect relief supply to demand points
- **Collection**: Transport debris to collection sites
 - Assign roads to collection teams
 - Minimize collection time and balance workload
- **Disposal/recycling**: Sort debris and decide on final processes
 - Debris processing site location
 - Process selection: wood grinding, concrete crushing, incineration, compaction, etc.
 - Landfilling/recycling tradeoff

Computational Experiments

- Example: Earthquake near Cambridge, MA
 - A 6.5 magnitude earthquake
 - Debris estimates using Hazus (FEMA's methodology for estimating potential losses from disasters, www.fema.gov/hazus)
 - Debris flow diagrams

Models for Collection

- **Inputs**: Debris amounts, facility locations and capacities, contractor data
- **Output**: A fair and continuous assignment of the roads to collection teams and expected collection time
- **Objective**: Minimize cost and completion time
- **Solve a MIP**: based sequential heuristic

Models for Disposal / Recycling

- **Debris estimates**: Potential locations for opening processing site
- **Workforce on collection and transportation**: Workforce capacities to make available at site

REFERENCES

- Debris Operations Tool: Optimizing disaster debris management operations. Available at debrismanagement.gatech.edu

AKNOWLEDGEMENT

This research has been supported in part by the National Science Foundation Grants CMMI-1000085 and CMMI-1538860, Andrea Laliberte, and Richard E. and Charlene Zalesky.