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Challenges to an effective Ebola response

Epidemic forecasting

▪ Rapidly evolving epidemic substantially 

differs from initial projections 

▪ Heterogeneous epidemic intensity and 

growth among affected regions

▪ Available models aggregate country-level 

forecasts



Slide 4 of 12Elisa Long | UCLA

Challenges to an effective Ebola response (cont’d)

Mitigation

▪ Limited resource availability

– Decisions about which interventions and where to focus

– Trained health care workers, Ebola treatment units (ETUs), 

transport, safe burials, etc.

▪ Decentralized response efforts

– Multiple regional, international, and NGOs deploying

resources to the crisis regions

– No model-based decision support tool available

▪ Public fear, skepticism, misinformation, stigma

Stage 1: Develop inter-region epidemic model calibrated to past data

Stage 2: Optimize resource allocation based on epidemic forecasts

Our approach
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Hospital beds are key to Ebola containment efforts

▪ Community education for improving awareness

▪ Contact-tracing

▪ Safe burial teams

▪ Personal protection equipment 

▪ Medical transport services

▪ Health care worker education

▪ Ebola Treatment Unit (ETU) bed capacity 

▪ Hospitalization rate is a key factor in containing 

the epidemic (Legrand et al, 2007; Meltzer et al, 2014)

▪ Future impact of hospitalization can be directly 

reflected in the epidemic model

www.msf.org.uk

Why optimize ETU resources?

Ebola intervention measures
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Stage 1: SIR epidemic model

𝑡 Time since epidemic start

𝑁𝑖 Size of population 𝑖

𝑆𝑖 Susceptible individuals in 𝑖

𝐼𝑖 Infected individuals in 𝑖

𝑅𝑖 Removed individuals in 𝑖

𝐾 Number of regions

𝛽𝑗 Transmission coefficient in 𝑗

𝜓𝑗 Dampening coefficient in 𝑗

𝑚𝑖,𝑗 Proximity coefficient between 

population 𝑖 and 𝑗

Notation

Susceptible Infectious Removed
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Two extensions to basic SIR model

▪ Infected individuals can move between 

geographic regions and infect others

 need dependency between populations

▪ 𝑐0 = share of contacts within home region 

▪ 1 − 𝑐0 = remaining contacts inversely 

proportional to distance 𝑑𝑖,𝑗 between capitals

i

j

k

Behavioral dampeningPopulation connectivity

▪ Initial overestimation of case counts did not account 

for behavioral change (e.g. reduced social contact, 

safe burials, etc)

▪ Dampening coefficient 𝜓𝑗 follows logistic function, 

representing 3 phases of behavior change:

𝑡

1 2 3

Behavior 

dampening 

converges 

to  1 − ത𝜓

Awareness 

remains low at 

epidemic start

Once awareness spreads, 

transmission is reduced 

via fast behavior adaption
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Epidemic model calibration to case count data

▪ Data source: Humanitarian Data Exchange  https://data.humdata.org/

▪ Included 21 regions in Guinea, Liberia, Sierra Leone (excluded regions with <50 cases or <5 data points)

▪ Up to 20 weeks as training data (start Sep 2014)  next 4 weeks for projection

▪ Estimated model parameters with Markov Chain Monte Carlo (MCMC) approach

▪ Goal: minimize error between model projections and observed data

4 weeks

8 weeks

16 weeks

https://data.humdata.org/
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Complete model calibration
(20 weeks of training data)
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(5) Conakry, Guinea
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(16) Montserrado, Liberia
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(17) Moyamba, Sierra Leone
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(18) Nimba, Liberia
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(19) Nzerekore, Guinea
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(21) Tonkolili, Sierra Leone
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Stage 2: Optimal resource allocation

Static Policies Dynamic Policies

Benchmark 

Heuristic

Greedy R0

Myopic LP

ADP 

Algorithm

Proportional to cumulative 

Ebola cases in each region

Prioritize only regions where 

𝑅0 > 1

Minimize future cases across all 

regions using epidemic model 

approximation

Estimate parameters and optimize 

allocation across all regions; 

repeat next period

Easy to 

understand

Flexible

Benchmark 

Heuristic

Greedy R0

Myopic LP

ADP 

Algorithm
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Where to allocate beds?   (16 weeks of training data, 120 beds)

Myopic LP generally allocates 

beds to centrally located regions 

(Moyamba) over distant regions 

with more cases (Conakry)

Greedy R0 concentrates 

resources in regions 

where 𝑅0 > 1

Benchmark Heuristic mitigates epidemic at 

current “hot-spots” (Conakry) but under-

invests in areas that surge later (Kerouane)

ADP Algorithm more evenly 

distributes bed, allocating 2-6 

beds per region per week

…
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Conclusions

▪ A compartmental model with distance-based transmission and behavior dampening closely 

matches historical data on Ebola case counts

▪ Model performance still good during early stages of outbreak (first 4 weeks)

▪ Myopic LP performs best over range of data & resource availability and is computationally fast

– With 100 beds/week, 50% of future cases are averted; best “shadow price” of all policies

▪ Other policies are more complicated to implement (ADP) or sub-optimal (Greedy R0)

Some important caveats

▪ Data quality is critical for accurate epidemic projections and optimized resource allocation

▪ Optimal allocation requires coordination among decision-makers and health organizations

Future extensions

▪ Consider multiple intervention types or stochastically arriving resources

▪ Apply to other infectious diseases, especially Zika virus

Thank you!
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