Spatial Resource Allocation for Emerging Outbreaks:

Application to the 2014 Ebola Epidemic

Elisa Long

University of California, Los Angeles

Eike Nohdurft

WHU – Otto Beisheim School of Management, Germany

Punchline

Geospatial Dynamic epidemic + behavior + Optimization = Better model change allocation

Challenges to an effective Ebola response

The New York Times

HEALTH

Ebola Cases Could Reach 1.4 Million Within Four Months, C.D.C. Estimates

By DENISE GRADY SEPT. 23, 2014

9 9 8 6 1 246

Epidemic forecasting

- Rapidly evolving epidemic substantially differs from initial projections
- Heterogeneous epidemic intensity and growth among affected regions
- Available models aggregate country-level forecasts

Mitigation

- Limited resource availability
 - Decisions about which interventions and where to focus
 - Trained health care workers, Ebola treatment units (ETUs), transport, safe burials, etc.
- Decentralized response efforts
 - Multiple regional, international, and NGOs deploying resources to the crisis regions
 - No model-based decision support tool available
- Public fear, skepticism, misinformation, stigma

significant risk in the United States.

-Our approach

Stage 1: Develop inter-region epidemic model calibrated to past dataStage 2: Optimize resource allocation based on epidemic forecasts

Hospital beds are key to Ebola containment efforts

Ebola intervention measures

- Community education for improving awareness
- Contact-tracing
- Safe burial teams
- Personal protection equipment
- Medical transport services
- Health care worker education
- Ebola Treatment Unit (ETU) bed capacity

Why optimize ETU resources?

- Hospitalization rate is a key factor in containing the epidemic (Legrand et al, 2007; Meltzer et al, 2014)
- Future impact of hospitalization can be directly reflected in the epidemic model

Stage 1: SIR epidemic model

Notation

- *t* Time since epidemic start
- N_i Size of population i
- S_i Susceptible individuals in i
- I_i Infected individuals in *i*
- R_i Removed individuals in *i*
- *K* Number of regions
- β_j Transmission coefficient in *j*
- ψ_i Dampening coefficient in *j*
- $m_{i,j}$ Proximity coefficient between population *i* and *j*

Two extensions to basic SIR model

Population connectivity

 Infected individuals can move between geographic regions and infect others

 \rightarrow need dependency between populations

- c₀ = share of contacts within home region
- 1 c₀ = remaining contacts inversely proportional to **distance** d_{i,i} between capitals

LIBERIA GUINEA SIERRA LOFA LEONE GRAND CAPE BONG MOUNT NIMBA COTE IVOIRE BOMI MARGIBI MONTS RRADO GRAND Monrovia BASSA RIVERCESS GRAND GEDEH SINOE NORTH ATLANTIC GRAND OCEAN KRU MARY LAND

Behavioral dampening

- Initial overestimation of case counts did not account for behavioral change (e.g. reduced social contact, safe burials, etc)
- **Dampening coefficient** ψ_j follows logistic function, representing 3 phases of behavior change:

Epidemic model calibration to case count data

- Data source: Humanitarian Data Exchange <u>https://data.humdata.org/</u>
- Included 21 regions in Guinea, Liberia, Sierra Leone (excluded regions with <50 cases or <5 data points)</p>
- Up to 20 weeks as training data (start Sep 2014) → next 4 weeks for projection
- Estimated model parameters with Markov Chain Monte Carlo (MCMC) approach
- Goal: minimize error between model projections and observed data

Slide 8 of 12

Elisa Long | UCLA

Stage 2: Optimal resource allocation

Static Policies		Dynamic Policies							
Benchmark Heuristic	Proportional to cumulative Ebola cases in each region	Myopic LP	Estimate parameters and optimize allocation across all regions; repeat next period						
Greedy R _o	Prioritize only regions where $R_0 > 1$	ADP Algorithm	Minimize future cases across all regions using epidemic model approximation						
Easy to understand									

Where to allocate beds?

(16 weeks of training data, 120 beds)

Conclusions

Geospatial epidemic model	+	Dynamic behavior change	+	Optimization	=	Better allocation
---------------------------------	---	-------------------------------	---	--------------	---	----------------------

- A compartmental model with distance-based transmission and behavior dampening closely matches historical data on Ebola case counts
- Model performance still good during early stages of outbreak (first 4 weeks)
- Myopic LP performs best over range of data & resource availability and is computationally fast
 - With 100 beds/week, 50% of future cases are averted; best "shadow price" of all policies
- Other policies are more complicated to implement (ADP) or sub-optimal (Greedy R₀)

Some important caveats

- Data quality is critical for accurate epidemic projections and optimized resource allocation
- Optimal allocation requires coordination among decision-makers and health organizations

Future extensions

- Consider multiple intervention types or stochastically arriving resources
- Apply to other infectious diseases, especially Zika virus

Thank you!