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AbstractMOTIVATION

LESSONS FROM FIELD WORK

DISCRETE-CONTINUOUS MODEL

Lesson: Disasters are Catastrophes are not the same

Lesson: Commercial Logistics is different from DRL

Multiple entry points

Private sector supply 

chains: partially destroyed

Local supplies: partially 

destroyed

Small to midsize 

geographic area
Challenging but doable 

local distribution

Most local supplies are 

destroyed

Few entry points

Private sector supply chains 

severely impacted

Extremely complex local 

distribution

Could be an extremely large 

geographic area

Disaster: Joplin Tornado Catastrophe: Japan Tsunami

Lesson: Challenge of Local Distribution

After Hurricane Maria struck Puerto Rico in 2017, 

vital supplies were stuck in ports and warehouses, 

leading to crisis among the population in need  

A similar crisis unfolded in Puerto Rico 

after Hurricane María

Objective: Minimize Total Social Costs

Assumptions:

 Demand is continuously distributed in the region

 Location of supplier warehouse is fixed and has a fixed capacity

 PODs may be located anywhere in the region

 Relief supplies are sent from the warehouse to the PODs using

vehicles of similar characteristics

 A generic commodity type is considered

 Manhattan distances are assumed

 Typical shapes are considered for the regions and districts

Discrete-Continuous Model:

Entry points Aid from rest of Haiti / 

Dominican Republic through 

small groups flowed well

Local physical / social 

distribution network

After the earthquake in Haiti, 

Aid flowing to Port au Prince 

faced huge distribution 

bottlenecks

Physical and social links 

with local distribution networks 

were severely disrupted

Distribution of supplies at the local level

requires large amounts of resources.

Deprivation costs are defined as 

“the economic value of the human 

suffering caused by a lack of 

access to a good or service” 

(Holguín-Veras et al. 2013)
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Deprivation Cost Function for WaterDeprivation cost 

functions:

• Monotonic

• Non-linear

• Convex

• Non-additive 

demands

• Possibly Hysteretic

Designing PODs and Delivery Strategy

Assuming demand is uniformly distributed, we generate the following CA functions for 

typical districting shapes:

RESULTS
• Natural disasters affect millions of people every year, and trillions of

dollars in damage

• Due to climate change, disasters are becoming more catastrophic

• Catastrophic events pose unique challenges to the humanitarian sector:
• Delivering aid to the locals

• Planning and prepositioning relief is many times financially prohibited

This research aims to contribute to the Disaster Response Logistics (DRL)

field efforts through the location and planning of Points of Distribution

(PODs) to deliver relief supplies.

 Deprivation costs depend on

deprivation times, , which include:

 The time to walk to the POD

 The time they have to wait for the relief

Legend
DC location

POD location

Location of person affected

District served by POD

Route from DC to POD

Route person takes to POD

Where to locate the PODs?

How is the region partitioned?

Population living in 

the area walk to the 

nearest POD to 

receive relief supplies

Relief supplies are 

prepositioned at 

DC and distributed 

to PODs at a 

periodic basis

Social Costs = Logistical Costs + Deprivation Costs
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Illustration: Locating PODs using rectangular districts

Continuous Approximation Functions

Insights obtained from the optimal solutions: 

• PODs will be located at the center and will move 

closer to the DC at a magnitude of the ratio of unit 

cost of delivery and deprivation costs per distance 

travelled.

• Districts will be equal if the frequency of deliveries 

remain equal.

• Waiting times get larger at districts that are farther 

away, and as the shipment size increases.

• The larger the waiting times with respect to the next 

district, the smaller the size of the district.

Rectangle Trapezoid
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Assume the location of one POD in a rectangular shaped region
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Empirical Estimates for Water Deprivation
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Characteristic Commercial

Logistics

Disaster Response 

Logistics

Objective Min Logistics Costs Min Social Costs (add 

deprivation costs)

Flow of cargo Self-contained Material convergence

Demand Known with some 

certainty

Unknown/dynamic

Decision making 

structure

Controlled by a few 

decision makers

Non-structured, 

thousands of DMs

Periodicity Repetitive One in a lifetime

Supporting systems Stable and functional Severely impacted
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