The Pandemic Response: Food Distribution Planning for Pandemic Flu

Ali Ekici, Pinar Keskinocak, Julie L. Swann
Supply Chain and Logistics Institute Humanitarian Logistics Research Center
H. Milton Stewart School of Industrial and Systems Engineering

For more information, contact:
Ali Ekici
aekici@isye.gate.edu

PROJECT SUMMARY

Pandemic Flu
- A pandemic flu will hit the world in the near future (Bird flu-H5N1)
- $71.3-165.5$ billion economic impact on US (CDC)
- $2.7-4.4$ million people might die (WHO)
- U.S. Department of Health & Human Services and U.S. Department of Commerce estimates
 - 20% of working adults will become ill
 - 40% workforce loss during peak

Problem Description
- Interruption in services due to infection
- Infected individuals may not be able to obtain food
- How to deliver food to ill people?

Objective
- Model the spread of pandemic flu geographically and over time
- Evaluate the effectiveness of intervention strategies
- Develop a facility location and resource allocation model for food distribution

DISEASE SPREAD MODEL
- An individual-based stochastic disease spread model
 - Age specific disease parameters
 - 5 age groups (0-5, 6-11, 12-18, 19-64, 65+)
- Infection types:
 - Households
 - Peer groups
 - Community (other daily interactions)
 - Import (people coming out of network)
- Night-day differentiation
- Disease progress
 - Within an individual (Wu et al. 2006) (based on age)

RESULTS: GEORGIA CASE
- Each census tract corresponds to a community
 - 1,615 census tracts
 - Total population is 9,071,756

Data
- Household statistics for each census tract
- Tract-to-tract worker flow data
- Classroom sizes
- Population age statistics

Simulation Results
- Percentage of symptomatic or hospitalized individuals for different R_0 values:

![Graph showing percentage of symptomatic or hospitalized individuals for different R0 values.]

- Summary of results

<table>
<thead>
<tr>
<th>R_0 Value</th>
<th>Peak Infectivity</th>
<th>Peak Day</th>
<th>CAR</th>
<th>IAR</th>
<th>Death Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>3.5%</td>
<td>70</td>
<td>92.3%</td>
<td>64.8%</td>
<td>0.27%</td>
</tr>
<tr>
<td>1.9</td>
<td>4.5%</td>
<td>50</td>
<td>64.8%</td>
<td>67.1%</td>
<td>0.09%</td>
</tr>
<tr>
<td>2.1</td>
<td>5.0%</td>
<td>40</td>
<td>52.2%</td>
<td>75.2%</td>
<td>0.09%</td>
</tr>
</tbody>
</table>

CAR: Clinical attack rate
IAR: Infection attack rate

INTERVENTION POLICY: VOLUNTARY QUARANTINE
- Individuals comply with the quarantine voluntarily with some compliance rate
 - Compliance rate: 50%
- The effect of timing and length of quarantine on
 - Peak infectivity (for $R_0 = 1.8$)

![Graph showing the effect of timing and length of quarantine on peak infectivity.]

- Infection attack rate (for $R_0 = 1.8$)

![Graph showing the infection attack rate for different quarantine lengths.]

Conclusion
- Both the timing and the length of the quarantine is important
- There is a diminishing rate of return as the length of the quarantine increases

ESTIMATING THE FOOD NEED
- Serve the households
 - with an infected (symptomatic or hospitalized) individual
 - with an infected individual that are below poverty level
 - with all adults infected
 - with all adults infected that are below poverty level
 - that are quarantined in case of a quarantine

Food need for Metropolitan Atlanta Area for $R_0 = 1.8$ assuming an individual needs 3 meals a day
- Households with an infected individual are served

RESULTS: GEORGIA CASE
- The optimal timing of an 8-week quarantine
 - Start of week 4 is best for reducing peak infectivity
 - Start of week 6 is best for reducing infection attack rate

Summary of Results for an 8-week Quarantine

<table>
<thead>
<tr>
<th>R_0 Value</th>
<th>Quarantine Start</th>
<th>Peak Infectivity</th>
<th>Peak Day</th>
<th>CAR</th>
<th>IAR</th>
<th>Death Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>7</td>
<td>8.0%</td>
<td>50</td>
<td>92.3%</td>
<td>64.8%</td>
<td>0.27%</td>
</tr>
<tr>
<td>1.9</td>
<td>4</td>
<td>1.8%</td>
<td>63</td>
<td>90.2%</td>
<td>64.8%</td>
<td>0.27%</td>
</tr>
<tr>
<td>2.1</td>
<td>3</td>
<td>3.8%</td>
<td>40</td>
<td>61.9%</td>
<td>62.9%</td>
<td>0.33%</td>
</tr>
</tbody>
</table>

CONCLUSIONS AND CONTRIBUTIONS
- The diminishing rate of return as the length of the quarantine increases:
 - An 8-week quarantine is almost equivalent to a 12-week quarantine in terms of reducing the peak infectivity
 - An integrated disease spread and food distribution model